Floris Ernst | Achim Schweikard

Fundamentals of Machine Learning

Support Vector Machines Made Easy

UVK Verlag · München

Contents

Preface	7
Part I Support Vector Machines	
1 Symbolic Classification and N	learest Neighbour Classification11
1.1 Symbolic Classification	
1.2 Nearest Neighbour Classifi	cation11
2 Separating Planes and Linear	Programming15
2.1 Finding a Separating Hyper	plane16
2.2 Testing for feasibility of lin	ear constraints16
2.3 Linear Programming	
MATLAB example	
2.4 Conclusion	
3 Separating Margins and Qua	dratic Programming25
3.1 Quadratic Programming	
3.2 Maximum Margin Separate	r Planes
3.3 Slack Variables	
4 Dualization and Support Vec	tors
4.1 Duals of Linear Programs	
4.2 Duals of Quadratic Program	ns38
4.3 Support Vectors	40
5 Lagrange Multipliers and Dua	əlity43
5.1 Multidimensional function	3
5.2 Support Vector Expansion.	
5.3 Support Vector Expansion	with Slack Variables48
6 Kernel Functions	53
6.1 Feature Spaces	53
6.2 Feature Spaces and Quadra	tic Programming54
6.3 Kernel Matrix and Mercer'	s Theorem58
6.4 Proof of Mercer's Theorem	
Step 1 – Definitions and Pr	erequisites59
Step 2 – Designing the righ	t Hilbert Space61
Step 3 – The reproducing p	roperty63

7 The	e SMO Algorithm	67
7.1	Overview and Principles	67
7.2	Optimisation Step	68
7.3	Simplified SMO	69
8 Reg	gression	. 79
8.1	Slack Variables	80
8.2	Duality, Kernels and Regression	81
8.3	Deriving the Dual form of the QP for Regression	82
Part II	Beyond Support Vectors	
9 Per	ceptrons, Neural Networks and Genetic Algorithms	. 89
9.1	Perceptrons	. 89
	Perceptron-Algorithm	. 91

	1 0	
	Perceptron-Lemma and Convergence	
	Perceptrons and Linear Feasibility Testing	
9.2	Neural Networks	
	Forward Propagation	
	Training and Error Backpropagation	
9.3	Genetic Algorithms	
9.4	Conclusion	
10 Ba	yesian Regression	
10.1	Bayesian Learning 101	
10.2	Probabilistic Linear Regression 103	
10.3	Gaussian Process Models 108	
10.4	GP model with measurement noise 111	
	Optimization of hyperparameters 112	
	Covariance functions	
10.5	Multi-Task Gaussian Process (MTGP) Models 114	•
11 Bay	esian Networks	
Propa	agation of probabilities in causal networks	
Appen	dix - Linear Programming139)
A.1 S	Solving LP0 problems)
A.2 S	Schematic representation of the iteration steps	,
A.3 ′	۲ransition from LP0 to LP	5
A.4 (Computing time and complexity issues150)
Refere	nces	-
Index.		5